What is it?

The Win32 Software Developer's Kit (SDK) is a large collection of import libraries and header files that give a programmer access to the features of the Win32 operating systems. All the Windows OS's include numerous system DLLs that offer services to user-level applications. These services include EVERYTHING, from basic tasks like allocating memory and creating windows to more complex features like multithreading. The SDK as an entity is simply the interface to the OS, the API. You can certainly call system DLLS without using the SDK libraries or headers, though that becomes extremely tedious and unnecessarily low-level. In short, any Windows program will be built with the SDK, including CVI itself.

The "Platform" SDK is Microsoft's term for the core libraries, and differentiates them from other APIs, like DirectX, that may perhaps be considered less widely used. CVI ships with a version of the Platform SDK. Though this version is updated with new CVI releases, Microsoft will usually release updated version of the SDK between CVI releases.

Why do you care?

CVI, like other development products, offers a higher-level interface to Windows programming than that of the Platform SDK. In some cases, CVI will not have provided the functionality an advanced applications programmer is looking for. In that case, they will turn to the SDK directly.

Many CVI users who have no experience with direct SDK programming are surprised at first by the complexity of it. Support issues sometimes arise out of this, and it is important that we handle these issues appropriately. We do not want to be responsible for supporting Microsoft functions, but we do want CVI users to be successful with the product. This means that as a minimum you should know the issues involved with calling SDK functions from CVI (how to do it). Further knowledge of particular subsets of the SDK, knowing what the functions do and how they work, is not necessarily required but can be a tremendous asset to both you and the customer. Understanding how straight Windows application development is done will help you understand what goes on behind the scenes of CVI much more clearly.

Key points

The Full-Development System ships with a full version of the SDK libraries and headers.

The Base Package includes a minimal set of SDK libraries -- just those required for some limited core functionality

A Custom installation of the FDS is required to install the SDK libraries (SDK is an option when you check what you want installed).

A special SDK item will appear on the CVI Help menu when the SDK is installed

File Structure

All SDK files are installed in the \sdk directory of the CVI installation. The following directory structure is used:

\sdk\include\ - All SDK header files

\sdk\lib\ - All SDK import libraries

\sdk\help\ - SDK help files

\sdk\bin - SDK utility programs, including a help compiler, IDL compiler, etc.

Getting Help

The SDK functions do NOT have function panels...they are not CVI functions. Getting help on the functions and figuring out where they are located is not always easy. CVI ships with the SDK InfoViewer, a help viewer that is activated with the CVI SDK Help menu item or directly (infoview.exe). Use this viewer to navigate the large amount of help information available on the SDK functions.

Microsoft's web-site also has an MSDN (Microsoft Developer Network) section that contains vast amounts of information including function-references as well as technical articles, Knowledge Base articles, and the like. Typically, MSDN is the most comprehensive source of information available from Microsoft on Windows application development. MSDN is also available in CD version, typically a set of CDs that is updated every few months and sent to those with subscriptions. The AE department may have this subscription, contact your training coordinator for details.

All CVI documentation on general SDK issues is located in the Programmer Reference Manual.

Header Files

The SDK includes a large number of header files that define the SDK types and macros and prototype functions. When building an application with the SDK, you must:

#include <windows.h>

This header really doesn't do anything other than include numerous other headers to completely define all of the basic SDK types and prototype the basic functions. For most functions, this header will include the ones you really need. When you locate the help for a particular function, you will be told which header file to use if it is not one of the core headers. Simply include this header in addition to <windows.h> to get the prototype or other definition.

Windows.h honors a set of macro definitions to control the subset of files included. For most cases, you can:

#define WIN32_LEAN_AND_MEAN

Alternatively, you can set CVI up to define this for you (Compiler Definitions menu item). This will narrow the set of files included and increase compile time. Take a look in the header and you'll see the different definitions and which files they affect.

You must include <windows.h> before the CVI Utility or Formatting and IO Library headers. These two libraries contain functions whose names are also defined in the SDK (CVI was there first). To avoid conflicts, include the CVI heders after the windows header, and the CVI headers will redefine the symbol to point to the CVI function names. There is information in the CAR database on manipulating these function names to use both the Windows and CVI versions.

Libraries

As with any library, you must add SDK libraries to your CVI project in order to link the functions. Of special note is the fact that CVI will automatically try to link the three core SDK libraries regardless of whether you have them in your project. This is in effort to simplify the use of common SDK functions. The three libraries that will link even without being included in the project are:

user32.lib

kernel32.lib

gdi32.lib

The sections below outline some general issues which typically serve as the biggest stumbling blocks to new SDK users.

SDK Types

The SDK includes a complete set of datatypes for use with the functions. This is of course done for compiler independence. For CVI users, who may not be extremely well versed in C, these custom types are often the most confusing thing about using the SDK. Rest assured, many of the types map directly to standard types, and a great many of them are just structures. Almost all of the standard types are defined in <windef.h> (included by <windows.h>). If you are ever unclear on a particular type, you can simply look it up directly in the header file. Here are some of the most common types:

DWORD - 32-bit unsigned integer (unsigned int)

BYTE - 8-bit value (char)

LPCTSTR - Null-terminated string

BOOL - Boolean value

HICON - Handle to an icon resource

Two things to note, you will see many types that begin "LP" -- in SDK world, this simply indicates "long pointer to". For example, LPDWORD is DWORD*, and you can use them interchangeably if you wish. Types that begin with "H" indicate "handle", and signify a handle to a particular resource like a window (HWND), icon (HICON), menu (HMENU), etc.

Error Reporting

Most of the SDK functions modify a global, per-thread error variable when they encounter error conditions. This is usually the case with BOOL functions, which return FALSE on error and set the variable. Some functions do take the CVI approach and return the error code themselves, but not most of them. To obtain the value of this error variable, call:

DWORD GetLastError (void);

The returned code will be defined in <winerr.h>, and include comments indicating the meaning. There are also functions to manipulate the code and obtain text descriptions -- look in the online help.

Structure Initialization

The SDK is heavily populated with structure types. Using the SDK, you will become used to the fact that you'll encounter a function that, to your happiness takes only a few parameters and looks easy to use. Upon taking a close look, you'll see that one of the parameters is a structure with a large amount of members -- so much for quick and easy. The tediousness of these structures is compounded by the fact that many of them will have a cbSize member, indicating the size. In most cases, you need to be sure you initialize this member to sizeof(type in question) before using the structure. You'll find that many a misunderstood function failure is the result of this parameter not being set properly.

Reference-Parameter Initialization

Another confusing issue -- Many functions will take reference parameters that, according to the documentation, the function will fill with appropriate information. For example, most of the Registry-access functions take a reference parameter that the function will fill with the size of the data in the Registry at the requested location. The confusing part is that the contents of the address you pass must actually be a valid input as well. Take care to note parameter descriptions in help documentation and pay attention to the fact that you may be required to pass a valid input through what looks to be only an output parameter.

The SDK can be daunting at first, but it really is just a large set of C libraries. As mentioned earlier, we do not want to spend undue time supporting the use of these functions -- that is Microsoft's job. However, we do want CVI users to be successful when they do foray out of the CVI libraries, so you need to understand the basics and get them started on the right track with the SDK.

The best way to familiarize yourself with the SDK is to develop with it -- there is no shortcut. For documentation purposes, MSDN is unparalelled in sheer quantity of information, with both the online and CD versions. Once you get the hang of navigating through it, it can be extremely useful. For a more didactic approach (MSDN is reference-ish), the Win32 programming "bible" is "Programming Windows 95" by Charles Petzold. This book will present the overall structure of the Windows API and get you started on the path of straight SDK programming (if you're interested).

As you support customers using the SDK, be sure to pay attention to what they are trying to accomplish -- why did they go with the SDK in the first place? One of CVI's biggest goal is ease-of-use, and this means wrapping as much of the Windows programming paradigm as possible behind our APIs. If you encounter an issue that you think CVI should offer native support for, do not hesitate to follow the normal feature suggestion procedures.

