Certified LabVIEW Developer (CLD)

Exam Preparation Resource Guide


Preparation Guide Goal:
This guide offers resources to aid a candidate in preparing for a CLD exam. This document is by no means complete. Feedback and suggestions are solicited. 
Exam Goal:
The CLD exam validates the knowledge and skills to design, develop and deploy a scalable, readable, and maintainable LabVIEW application using advanced software principles, architectures, techniques and the LabVIEW Development Guidelines.
Exam Topics (Outline):
· Certified LabVIEW Associate Developer (CLAD) exam topics
· Software lifecycle models and design process

· VI design practices

· Project management

· Design patterns, event handling, and synchronization mechanisms

· Data structures and variants

· References and Property Nodes
· Multithreading, memory, and performance optimization

· Windows connectivity and communication 
· Accessing external code

· VI Server

· Error handling

· Application deployment
Exam Prerequisite:
Valid CLAD certification.
Exam Details:
· Must be scheduled by contacting certification@ni.com
· Proctored by National Instruments staff

· 4-hour application development exam

· The following are provided or allowed during the exam:


· A PC with LabVIEW. You may use the LabVIEW Help and LabVIEW documentation

· Application development specification

· Screenshot of front panel 

· Description of the controls and indicators

· General requirements

· Functional specifications of the application
Exam Grading:

· Applications are graded on three criteria:

· Functionality

· Programming Style

· Documentation

· Each of the criteria have approximately equal weight

· Passing grade is 75% or higher
Exam Grading Details:

The following points are taken into consideration for each of the grading criteria:

· Functionality: 
· Is the Run arrow broken?

· Does the VI properly perform the requirements listed in the specifications?

· Is the logic correct for Boolean inputs and outputs?

· Does the VI respond to user inputs within the stated time limit (100ms)?
· Does the VI / subVIs use 100% CPU time?

· Is file I/O implemented correctly?

· Does the application stop on error?
· Style: 
· Does the application follow LabVIEW Development Guidelines?
· Is the VI: 

· Readable? 

· Constructed for scalability?

· Easily maintainable?
· Overly complex?
· Is the VI constructed in a professional manner?
· Does the VI use LabVIEW frameworks or design patterns?
· Minimum requirement is to use a state machine

· Is the VI hierarchical?

· Repeated code should be in subVIs

· Are type defined enumerated controls used to define states?
· Does the VI use unnecessary temporary variables?
· Are appropriate data types, ranges, and format/precision used for front panel controls?

· Is data grouped in appropriate data structures: arrays or clusters? 
· Does the VI use deeply nested structures (2 or more) 
· Does the VI use sequence structures for purposes other than initialization or cleanup?
· Does the VI use local and global variables? 
· Local variables can be used to update controls

· Are global variables protected to avoid race conditions?
· Are Property Nodes (value) used for updating indicators?

· Are front panels and block diagrams well laid out?
· Are block diagrams cramped into small spaces?

· Are there unnecessary bends in wires?

· Are objects / wires overlapping?

· Are wires running under structures or structure borders?
· Are the error terminals wired on VIs?

· Are references closed appropriately?

· Is the VI optimized for memory and performance?

· Documentation

· Is the VI documented through VI Properties?

· Are the subVIs documented?

· Are wires documented with appropriate labels?
· Is the functionality documented?
· Block diagram level
· Main and nested structure level
· Do front panel controls and indicators have descriptive names?
· Do VIs have descriptive icons?
· Are constants documented?

· Do front panel controls have associated tip strips?

· Does the top-level VI have a non-default icon?

· Do all subVIs have consistent icon design?
Training / Tutorials:

· Paid training materials:

· National Instruments LabVIEW Intermediate I and II courses:

· Instructor led

· Self- paced by using the course manuals

· National Instruments CLD preparation course (online)
The following table lists additional resources for specific topics:

	Topic
	Details of resources by topic

	Functional global variables
	· Global Variables

	State machine design pattern
	· Application Design Patterns: State Machines

	Queued state machines
	· Using Queues to Create a More Flexible State Machine

	Event-driven programming
	· Inside LabVIEW: Event-driven Programming

	Event-based state machine
	· Event-Driven Programming in LabVIEW

	Advanced event handling techniques
	· Advanced Event Handling with LabVIEW 7 Express

	Queued message handler
	· Queued Message Handler with Response Notification

	Master/slave design pattern
	· Application Design Patterns: Master/Slave

	Producer/consumer design pattern
	· Application Design Patterns: Producer/Consumer

	VI Server-based design
	· Dynamically Loading and Calling VIs

	Synchronization, multithreading, memory, and performance optimization
	· Optimizing Applications

	Variants
	· Variant Data in LabVIEW: Mastering a Higher-Level Way to Work with Data

	ActiveX
	· ActiveX

	.NET
	· .NET

	Networking
	· Networking

	Accessing external code
	· Using External Code

	Deploying applications
	· Distributing and Documenting VIs

	Development tools and guidelines
	· Development Tools and Guidelines


Page 1 of 4

